Online Reservation System Design

After carefully going over the specification a number of times and picking out the key entities, attributes and relationships I produced the following database schema:

CREATE TABLE airport (airport_id SERIAL NOT NULL PRIMARY KEY,

airport_name VARCHAR(20), country VARCHAR(20), gateway_type VARCHAR(15));

CREATE TABLE aircraft (aircraft_id SERIAL NOT NULL PRIMARY KEY, aircraft_type VARCHAR(15), eco_seats INTEGER, business_seats INTEGER, first_seats INTEGER, total_seats INTEGER);

CREATE TABLE passenger (passenger_id SERIAL NOT NULL PRIMARY KEY, pass_forename VARCHAR(20), pass_surname VARCHAR(20), pass_address VARCHAR(50), pass_points INTEGER);

CREATE TABLE exec_club (club_id SERIAL NOT NULL PRIMARY KEY,

passenger_id INTEGER, pass_points INTEGER, FOREIGN KEY (passenger_id) REFERENCES passenger (passenger_id),

FOREIGN KEY (pass_points) REFERENCES passenger (pass_points));

CREATE TABLE flight (flight_id SERIAL NOT NULL PRIMARY KEY,

flying_from VARCHAR(3), flying_to VARCHAR(3), flight_date DATE, flight_arrival INTEGER, flight_departure INTEGER,

flight_type VARCHAR(20), available_fc_seats INTEGER,

available_bc_seats INTEGER, available_ec_seats INTEGER,

aircraft_id VARCHAR(4), price DECIMAL (4,2),

FOREIGN KEY (flying_from) REFERENCES airport (airport_id),

FOREIGN KEY (flying_to) REFERENCES airport (airport_id),

FOREIGN KEY (aircraft_id) REFERENCES aircraft (aircraft_id));

CREATE TABLE Booking (booking_id SERIAL NOT NULL PRIMARY KEY,

seat_class VARCHAR(10), passenger_id INTEGER, flight_id INTEGER, issue_agent VARCHAR(3),

FOREIGN KEY (passenger_id) REFERENCES passenger(passenger_id),

FOREIGN KEY (flight_id) REFERENCES flight (flight_id);

FOREIGN KEY (issue_agent) REFERENCES airport (airport_id);

The following two diagrams show my basic first E-R diagram modelling the system and the refined and normalised database design.

Changes:

The above schema shows my final design having refined it a number of times. The normalised diagram also closely reflects the design of my final system besides that I dropped the routes table. This also meant my flight table was also altered because the departure and destinations were moved into here.

I have made a number of changes in the normalised E-R diagram and further alterations in the early implementation stages including:

Adding departure and arrival times to the flight table as I soon realised dates alone weren’t sufficient.

I totally forgot about flight prices so these had to be incorporated into the flight table as well. This required some thinking because I ended up with 14 different price variations (see ticket pricing table below).

Adding Issue Agent to the booking table as this small detail was required in the specification.

Adding an executive club table and relating it to the passenger table. It was best to leave this till last because it relied on the rest of the design being sorted beforehand.

My flight table ended up becoming quite large especially after I abandoned my routes table (de-normalising my design!). This was because I was having trouble with the flight searches using a routes and flight table. However later I realised how perform searches (from reading up on sql), but it was too late to alter my whole design. However, practically everything still worked correctly and redundant data was minimal but having a routes table would result in a better database design. I feel that I have made effective use of foreign keys in my database schema as my diagrams above illustrate.

If I had some extra time I would sort out reserving flights as well as booking them. Plus I would use a routes table so that when a flight is over it can just be deleted and a new flight assigned to the route. I did try doing basically the opposite to booking a flight and increment the available seat numbers back when the flight is over but this caused a number of problems.

Front-End System

In regard to the php-driven front-end system a customer can search flights by specifying the departure and destination and the dates to search between. To book flights a user has to register first then they are able to book flights by simply specifying their passenger ID, the flight ID, seat class and issue agent.

The booking.php page is quite lengthy because it contains a number of conditional statements and loops to perform tasks such as decrementing available seat numbers, incrementing the passenger’s points and calculating ticket prices. All these depend on a combination of factors including flight type, class, number of passenger points, etc.

I have also provided a page with various other useful enquiries such as searching for flights just from the UK between two dates and displaying passenger lists for example.

